咨询热线:
17715390137
18101240246
18914047343
邮件:mxenes@163.com
扫码关注或微信搜索公众号:
二维材料Fronrier
关注后点击右下角联系我们,
进入企业微信。
专业服务在线
引言
图1. MXene的诸多特性
近日,瑞士联邦理工学院材料科学研究所张传芳在Energy& Environmental Materials上发表了题为“Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties and Electrochemical Energy Storage Applications”的文章。该文章首先系统性地回顾了MXene的合成、插层、剥离方法。然后,文章突出了MXene不同家族成员的诸多性质,包括导电、导热、能带、光电、机械和热力学等特性。最后,文章突出了MXene用于构筑高面容量和体积容量的超级电容和可充电电池(包括锂、钠、钾、铝离子电池和锂硫电池)电极。该综述梳理了MXene从制备到性质到应用,助力于实现更为实用的新能源储能器件。
简介
1. MXene的制备
5. 面向高体积电容的超级电容器件
图10.(a)不同MXene柔性膜在钠离子电池负极中的应用;(b)MXene在铝离子电池负极中的应用。
总结
当前MXene毫无悬念的成为了储能领域的炙手可热的明星材料。为了进一步促进MXene领域的长足发展,作者认为要围绕下面五个方面来着手:
1.探明限制规模化制备MAX和MXene中的短板,降低制备成本;从源头上厘清影响制备过程中的关键因素,并探索新的、环境友好型的刻蚀方法;
2.探明MXene纳米片与各种溶剂的交互机理,提升MXene悬浮液在水系和有机系溶剂中的寿命;抗氧化剂的添加、片层大小、缺陷位置和边缘保护等策略,应该多管齐下;
3.弄清MXene的表面化学对性质的影响;探索层间距对外向电导率、离子扩散动力学、客体粒子载量的影响,从而提升电极的体积容量和面积容量;
4. 探索器件的封装技术;
5.加深理论模拟计算能力,用理论模拟指导筛选更有潜力的MAX和MXene。
张传芳,瑞士联邦理工学院联邦材料研究所高级科学家。目前主要研究领域为:基于高质量、功能性二维材料墨汁的规模化电子器件的打印。留美期间,担任美国能源部资助下的Drexel-UCLA合作项目的主要研究员;留欧期间,历任ERC研究员、高级研究员、课题组长。受邀担任超过32个同行评议期刊审稿人,如Nature Comm, JACS, Adv. Mater., ACS Nano, Progress in Materials Science等。迄今发表50余篇SCI论文,如Nature(专著章节), Nature Energy, Nature Communications (2),Adv. Mater (VIP), Adv. Funct. Mater (VIP), Adv. Sci, ACS Nano等杂志,其中VIP论文2篇,ESI热点论文2篇,ESI高被引论文11篇。H-index为30,被Science,Nature, Nature Energy等SCI杂志引用3400余次。入围2016年、2018年爱尔兰年度青年领军人物、年度实验科学家、年度实验研究员, 2019欧洲华人十大科技领军人物等称号。
张传芳博士近期在MXene领域的文章
1. Conducting and Lithiophilic MXene/Graphene Framework for High-Capacity, Dendrite-Free Lithium-Metal Anodes, ACS Nano, 2019, https://pubs.acs.org/doi/abs/10.1021/acsnano.9b07710
2. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties, and Applications”, edited by Y. Gogotsi and published by Springer Naturepress, 2019. https://link.springer.com/chapter/10.1007/978-3-030-19026-2_25
3. A Robust, Freestanding MXene-Sulfur Conductive Paper for Long Lifetime Li-S Batteries. Advanced Functional Materials, 2019, 29, 1901907. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201901907
4. Additive-free MXene inks and their direct printing of micro-supercapacitors.Nature Communications, 2019, 10, 1795 https://www.nature.com/articles/s41467-019-09398-1
5. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density, Journal of Materials Chemistry A, 2019, 7, 9478 https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta02190f
6. High Capacity Silicon Anodes Enabled by MXene Viscous Aqueous Ink.Nature Communications, 2019, 10, 849https://www.nature.com/articles/s41467-019-08383-y
7. In-situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High-Capacity, Long Lifetime Li-S Batteries.Advanced Science, 2018, 5, 1800502 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201800502
8. Stamping of Flexible, Co-planar Micro-Supercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201705506
9. Graphene and MXene-based transparent conductive electrodes and supercapacitors, Energy Storage Materials, 2019, 16, 102-125 https://www.sciencedirect.com/science/article/pii/S2405829718304823
10. Transparent, Flexible and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance, Advanced Materials, 2017, 29, 1702678. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201702678
11. Oxidation stability of colloidal 2D titanium carbides (MXenes),Chemistry of Materials, 2017. 29 (11), 4848-4856. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b00745
12. Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries, Advanced Functional Materials, 2016, 26, 4143-4151 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201600682
13. Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials.Chemistry of Materials, 2016, 28 (11), 3937–3943 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b01244
14. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Applied Surface Science, 2019, 484, 383-391. https://www.sciencedirect.com/science/article/pii/S0169433219308955
15. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties and Electrochemical Energy Storage Applications, Energy Environmental Materials, 2019, Just accepted, DOI: 10.1002/eem2.12058.
版权所有 © 2019 北京北科新材科技有限公司
All rights reserved.京ICP备16054715-2号 |