hotline:
17715390137
Tel/Wechat:
18101240246 (Technology)
0512-68565571
Email:mxenes@163.com (Sales Engineer)bkxc.bonnie@gmail.com
Scan the code to follow or search the official account on WeChat:
2D Materials Fronrier After paying attention,
click on the lower right corner to contact us,
Enter enterprise WeChat.
Professional Services Online
已传文件:photo/201982153025406.png
Low‐cost solution‐processed lead chalcogenide colloidal quantum dots (CQDs) have garnered great attention in photovoltaic (PV) applications. In particular, lead selenide (PbSe) CQDs are regarded as attractive active absorbers in solar cells due to their high multiple‐exciton generation and large exciton Bohr radius. However, their low air stability and occurrence of traps/defects during film formation restrict their further development. Air‐stable PbSe CQDs are first synthesized through a cation exchange technique, followed by a solution‐phase ligand exchange approach, and finally absorber films are prepared using a one‐step spin‐coating method. The best PV device fabricated using PbSe CQD inks exhibits a reproducible power conversion efficiency of 10.68%, 16% higher than the previous efficiency record (9.2%). Moreover, the device displays remarkably 40‐day storage and 8 h illuminating stability. This novel strategy could provide an alternative route toward the use of PbSe CQDs in low‐cost and high‐performance infrared optoelectronic devices, such as infrared photodetectors and multijunction solar cells.
Ahmad, W., He, J., Liu, Z., Xu, K., Chen, Z., Yang, X., Li, D., Xia, Y., Zhang, J., Chen, C., Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency. Adv. Mater. 2019, 1900593. https://doi.org/10.1002/adma.201900593
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900593
Reminder: Beijing Beike New Material Technology Co., Ltd. supplies products only for scientific research, not for humans |
All rights reserved © 2019 beijing beike new material Technology Co., Ltd 京ICP备16054715-2号 |